THE SPECTRAL MAPPING THEOREM FOR EVOLUTION SEMIGROUPS ON Lp ASSOCIATED WITH STRONGLY CONTINUOUS COCYCLES

نویسنده

  • Y. LATUSHKIN
چکیده

In this note we show the spectral mapping theorem for the evolution semigroup on L p ((; ; X), 1 p < 1, associated with a strongly continuous cocycle on a Banach space over a continuous ow on a locally compact metric space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential Dichotomy of Cocycles, Evolution Semigroups, and Translation Algebras

We study the exponential dichotomy of an exponentially bounded, strongly continuous cocycle over a continuous ow on a locally compact metric space acting on a Banach space X. Our main tool is the associated evolution semigroup on C 0 ((; X). We prove that the cocycle has exponential dichotomy if and only if the evolution semi-group is hyperbolic if and only if the imaginary axis is contained in...

متن کامل

A SPECTRAL MAPPING THEOREM FOR SEMIGROUPS SOLVING PDEs WITH NONAUTONOMOUS PAST

for an evolution family (U(t, s))t≤s≤0 on X . We refer to [5, 12] where these equations have been introduced and to [10, 13] for concrete examples. In particular, we showed in [12] that (1.1) and the abstract Cauchy problem associated to an operator ( ,D( )) on the product space := X × L(R−,X) are “equivalent.” Since, under appropriate conditions, the operator ( ,D( )) is the generator of a str...

متن کامل

Higher Derivations Associated with the Cauchy-Jensen Type Mapping

Let H be an infinite--dimensional Hilbert space and K(H) be the set of all compact operators on H. We will adopt spectral theorem for compact self-adjoint operators, to investigate of higher derivation and higher Jordan derivation on K(H) associated with the following cauchy-Jencen type functional equation 2f(frac{T+S}{2}+R)=f(T)+f(S)+2f(R) for all T,S,Rin K(H).

متن کامل

A note on spectral mapping theorem

This paper aims to present the well-known spectral mapping theorem for multi-variable functions.

متن کامل

An Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator

The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997